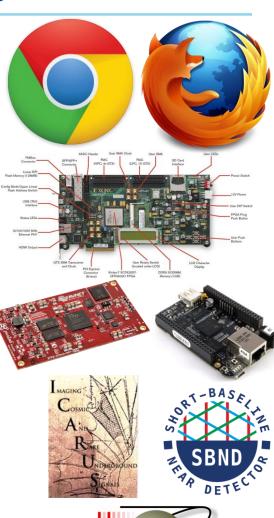


Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

TDAQ from Scientific Computing Division (FDE/SCD)

Ryan A. Rivera 2020 Snowmass TDAQ Community Meeting July 16, 2020


Who are we?

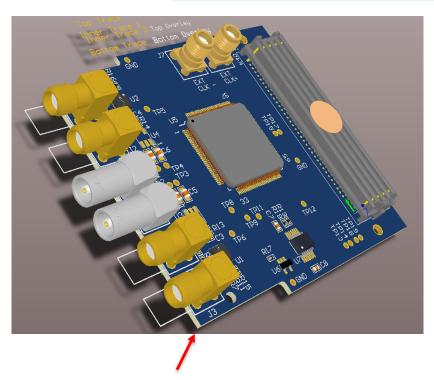
- Frameworks, DAQ and Electronics (FDE) department
 - 4 groups of 6-8 people
 - 2 software groups and 2 electrical engineering groups
- DAQ software framework (and analysis software framework) experience
- Detector readout chain, circuit board design, test stand, and test beam
- Trigger and DAQ project management and FPGA experience
 - L2 responsibility in Mu2e and SBN
 - Trigger and real-time machine learning FPGA implementation for CMS
 - Responsible for NOvA DAQ firmware and software

otsdaq and artdaq Data Acquisition Toolkits

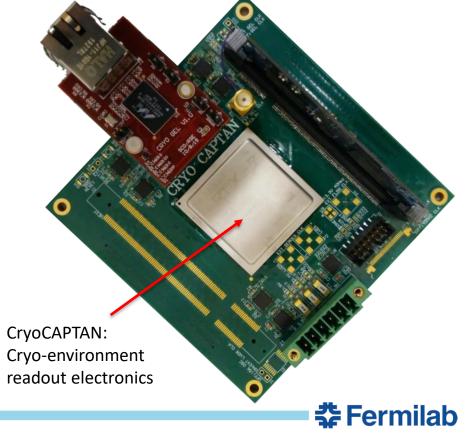
- otsdaq is a Ready-to-Use DAQ solution aimed at testbeam, detector development, and other rapiddeployment scenarios
 - Well established web-based graphical interface for Chrome and Firefox.
 - Users implement custom functionality through plugins
 - Growing library of user plugins.
 - otsdaq uses xdaq and the artdaq framework under-thehood, providing flexibility and scalability to meet evolving DAQ needs
- artdaq is a plugin-based DAQ toolkit, used by several experiments such as ProtoDUNE, SBN, and Mu2e
 - Flexible and scalable design allows for different detector technologies and event selection
 - Allows for data to be analyzed mid-stream for software triggers
 - artdaq filtering modules are compatible with the art analysis suite
- Full otsdaq/artdaq/art suite chosen for Mu2e.

Expanding user base through test stands and test beams

- otsdaq used to readout Silicon Tracking Telescope, Wire Chambers, and Cerenkov
- Users fully integrated in otsdaq:
 - CMS Inner Tracker Europe group
 - CMS Inner Tracker USA group
 - CMS Outer Tracker Strip-Strip modules
 - CMS Outer Tracker Strip-Pixel modules
 - CMS HGCAL
 - CMS Timing Endcap (USA)
 - CMS Timing Barrel (Europe)
- Users of precision tracking (and synchronized with otsdaq):
 - LHCB Strip detector
 - SPHENIX at RHIC GEM detectors

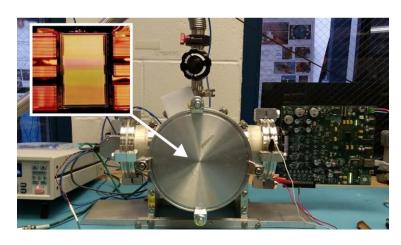

Other Initiatives

Modernizing the Physics Research Equipment Pool (PREP): NIM+ project ots in your browser for Ethernet enabled NIM and LVTTL coincidence 4 module. NIM + State Machine navigation 00 **Gb Ethernet** en. Artix-7 FPGA **ROOT** web displays **# Fermilab**


Plans for Detector Support and Modernizing Equipment

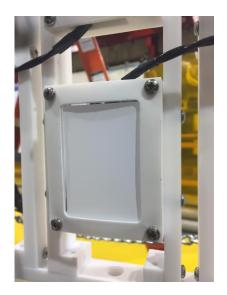
In FY20-22 add additional DAQ support for the detectors at the Fermilab Test Beam Facility (FTBF), including the Silicon Strip Telescope, Wire Chambers, and Cerenkov, including a event server for rapid-turnaround analysis.

And continue work to modernize modules available in the Physics Research Equipment Pool (PREP) for all Fermilab collaborators. Also, supporting growing demand for cold-electronics readout.

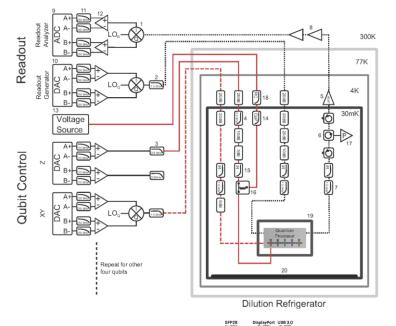

Gigabit-ADC Mezzanine Card for NIM form-factor

Low-Noise Detector Readout

- LTA-QSM electronics picked as readout and DAQ for skipper CCD experiments (SENSEI, CONNIE, DM 10Kg).
 - 100 boards are in production at 10% of the cost of a commercial lower performing alternative. \$100K
 (LTA) vs \$1M (commercial)
- fMESSI readout being used for CMB-S4 R&D at SUBARU
- Next version of fMESSI is being developed and will cover needs for CMB-S4, ADMX, QC, and MKIDs.
- ARAPUCA photon detector for DUNE achieves 4% efficiency with active array of SIPMs


LTA-QSM for skipper CCDs

fMESSI for QC and superconducting detectors


ARAPUCA (TallBo at PAB)

Superconducting quantum processor readout and control (SQC-R&C)

Gustavo Cancelo Fermilab PI for Readout and Control (DOE-QUANTIED)

Ethernet
RJAS

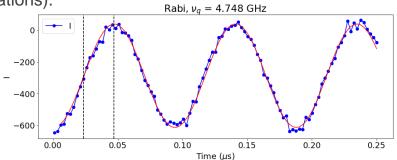
MSPA30 JTAG
USB (JTAG/LART)

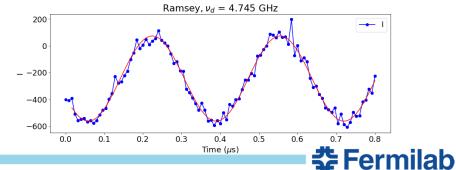
MSPA30 JTAG
USB (JTAG/LART)

JTAG

JTAG

JTAG


JTAG


JTAG

AND DAR Completed
AND Clark destricts of the properties of the properti

FNAL hardware based on RFSoC FPGA. Used to do the measurements shown

- Fault tolerant quantum computers require a sophisticated readout and control electronics that includes RF hardware, high speed A/D and D/A electronics, FPGA signal processing, error detection and correction, flexible quantum program control, etc.
- Fermilab is leading an effort in R&C, with partners at UC and MIT.
- SQC-R&C developments have an important synergy with electronics for some of the main DOE Cosmology projects such as CMB-S4, ADMX, and MKIDs R&D.
- We are already controlling qubits (see Rabi & Ramsey oscillations).

